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VARIATIONAL PRINCIPLES FOR PERFECT GAS FLOWS 
WITH STRONG DISCONTINUITIES EXPRESSED IN EULER VARIABLES* 

A.N. KRAIKO 

Variational principles yielding equations of flow and conditions at strong discon- 

tinuities are considered in the case of a two-parameter gas in a strong potential 
force field. Functionals which are subjected to variations are expressed in terms 

of Euler variables and do not contain supplementary differential relations. 

Similar principles were earlier constructed and applied primarily to continuous flows 
(see, e.g., /l-12/). Only few attempts were made in gasdynamics /13,14/ and related fields 

of continuous medium mechanics /15,16/ to apply them in the case of strong discontinuities. 

The Hamilton principle was extended in Lagrangian variables to unsteady discontinuous flowsof 

perfect gas by Zamplen /17,18/. Similar principles for substantially more complex media were 

formulated by Sedov and his disciples (see /19,20/ and publications cited there) inthedomain 
of Newtonian mechanics and of the theory of relativity (special and general). 

For steady flows the starting point of investigations based on the use of the two-dimen- 

sional stream function appeared in /14/. The continuity of that function at shock waves made 
it possible to obtain relations at these in the form of Weirstrass-Erdman conditions. The 
vector potential lacks that property, and its application in /14/ only let to the formulation 
of the variational principle for continuous isoenergetic and isotropic three-dimensional 
streams, for which one of the simpler formulations of Batemen's principle provides the same 

result. Before the appearance of /14/, stream functions were used in the fomlulation of vari- 
ational principles for continuous and discontinuous flows in /3-55/ and /13/, respectively. 
The varied functional of the form used in /14/ was also introduced in /3/. 

Here, unlike in /14/, two stream functions are used as in /4/ for an arbitrary steady 
three-dimensional stream. The continuity of these functions at shock waves leads to the 
required conditions. At tangential discontinuities these functions usually become discontin- 

uous, but the validity of the obtained principle is not violated, if the varied and the in- 

itial discontinuities are formed by the same streamlines. Note that Euler coordinates and 
particle displacements used in /17-20/ for formulating variational principles in Lagranqian 

variables have the same properties. 
A modification of the Bateman's principle formulation mentioned above is proposedbesides 

the principle that hold for any steady streams for piecewise isentropic and isoenergeticflows 

with tangential discontinuities of arbitrary intensity. This modification makes Bateman's 

principle valid also for this case. A similar modification is extended to three-dimensional 

unsteady streams with contact discontinuities. It is shown that the original formulation of 
Bateman's principle and its modification remain valid in the presence of discontinuities that 

admit isentropic investigation. It is pointed out that the principles proposed in /3,4/ for 

continuous steady isoenergetic flows in the absence of external forces, are in fact valid al- 

so in the presence of discontinuities. These principles are based on the use of one/i/ or 

two /4/ stream functions, which makes possible the extension todiscontinuous solutions. The 

assumption in /4/ is isoenergy narrows the application domain of these principles and, also, 

complicates the analysis. 

1. Let us recall the properties of the two stream functions $1 and llz that are intro- 

duced below in the analysis of steady three-dimensional flows. Let p be the density and 9 

the velocity vector. Then, as shown in /4/, the stream density vector pq can be represented 

in the form 

PP = Q% x V% (1.1) 

which satisfies the continuity equation V (pq)=O. The stream functions '$i in (1.1) are 

scalar functions of coordinates. By virtue of equalities 
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qQJ, 3 (V$I X V$#@* = 0, i = 1, 2 (1.2) 

they are constant along each streamline, hence the latter may be considered as intersection 

lines of surfaces vl= const and $)a = con&, for whose determination we use (1.2) afterhav- 

ing specified in conformity with (1.1) a set of lines $i=const on some surface intersected 

by streamlines. This surface can, for instance, be taken in the unperturbed oncoming stream, 

where at least one of the set of lines (say g,=const) is constructed entirely arbitrarily. 

The stipulation of continuity of $i at shock waves ensures the conservation of the stream 

mass over such discontinuities, since 

(1.3) 

where TV, t2, n is the right-hand set of three mutually orthogonal unit vectors, with vector 

n of the normal to the discontinuity surface, and q,, is the projection of q on n. Since 

the derivatives of ~#ii are determined in directions tangent to the jump, the continuity of 

qi ensures the continuity of pQn. At tangential discontinuity surfaces and along impene- 

trable walls D -qn = 0, which, incidentally, is automatically satisfied, if on such surface 

(more exactly, on some of its "initial" line intersected by streamlines) one of the stream 

functions is assumed constant. 
In a steady stream of perfect gas with specific enthalpy i in the absence of external 

forces the total enthalpy Z= i $- pa/2 is constant along each streamline independent of the 

presence of discontinuities. Hence Z = Z&,$J, where the continuous or discontinuous func- 

tion Z (%, 'lPa) is determined by conditions in the oncoming stream. In the presence of an ex- 

ternal mass force F = -VU, where the potential energy U is a known function of coordinates, 

J($ir$z) = Z + U plays the part of I. Unlike Z and J the specific entropy s increases at 

transition through compression shocks. 

for each subregion Vk 
Hence s = Sk($1,~'2), with functions Sk(ql,$~) proper 

In which space V occupied by the stream is divided by shock waves. 

2. We introduce the functional 

L= dV 
Y 1 

(2.1) 

in which the internal energy e=i-p/p=e(p,s) is a known function of p and s. Since 

Tds = de -I- pd (1 I p), where T is the absolute temperature and p the pressure, hence 

% = (ae / ap), = p 1 p2, e, z (ae / as), = T (2.2) 

We rewrite (2.1) using (1.1) and the properties of J and S, in the form 

L= I WI x v** Ia 

V 
2P - Pe (Py Sk (‘h ‘/‘z)) - pu + pJ ($1, $z)] dV (2.3) 

and shall show that the conditions of steadiness with respect to variations p,$t anddisplace- 

ments An of strong discontinuity surfaces at’* =aV, l_j aV,, where aV,(aV,) are compression 
shock surfaces (tangential discontinuities) , yield the equation of flow and conditions of 

conservation at discontinuities, if in each subregion vk, Skis assumed to be a fixedfunction 
of its arguments (see the end of this paper). 

Then, for any arbitrary function 'p under variation 6~ we take the difference betweenthe 

varied and unvaried values for fixed independent variables. The displacement An is measured 

along the normal n to aV,. Parameters on different sides of aV, are denoted by indices plus 

and minus and the remainder 'p+- cp_ is denoted by [cpl. Besides 6~ we introduce on eachside 
of aV, the increment Acp which we define as the difference of Q at points of varied and un- 
varieddiscontinuitieslying on the same normal. It can be shown (see, e.g., /21/J that on 
each side of at’, 

where n is either the unit vector of its normal ("external" to the considered side of avd) 
i.e. n, or n_ = --n+, or any of vectors n, and n-. In either case the validity of (2.4) 
is ensured by the simultaneous change of signs of n and An. 

Varying (2.3) together with (2.2) and (2.4) we take into account the following. The 
sequence of equalities 
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(2.5) 

is valid. 
The volume integral in 6L of the last term of (2.5) is reduced in the usual manner to 

integrals on both sides of av,, body surfaces aF,, and the remaining sections of boundary $V, 
of the considered flow region. After this the integrands of surface integrals contain (9 x 
W*)n = (4 x %)n. Since n= rI x r2, hence 

(q x O+i)n z q%l*iZ -q&it (2.6) 

where qrr is the projection of 9 on Ti * Since in turn ftl = -_n x rz, and r2 -_ n x 71, it fol- 
laws from (1.1) that 

(2.7) 

Wing (2.4), (2.6), and (2.7) we obtain that in the surface integrals in && with respect to 

av=av, u avt,u av, 

(2.8) 

(q&t - qr&aa) A$, - m2An (ST2 - pa2 + qrs2) 

with An E 0 and A& = 61p, on aJ’b IJ at’,. 
Using (2.2), (2.5),and (2.8),t~ingintoaccount~etotalcontxibut~o~in &Lof displacement 

of discontinuities on An, and combining the integrals on different sides, we finally obtain 

where S++i and J+i are partial derivatives with respect to qtr the superscript k at S is 
omitted, and dIZ is an element of the respective surface. 

The condition of steadiness of L with respect to p is provided by the energy integral 

qa12+i4-U= J&S,%) (2.i.O) 

while the conditions of steadiness with respect to qi lead to two scalar equations that are 
equivalent to the single vector equation 

qxw = VJ- TVS (2.11) 

We stress that (2.11) indeed yields two, not three, scalar equations, since the projec- 
tions of the left- and right-hand sides of this vector equation onto the streamline direction 
are identically zero. 

Relations at shock waves are obtained in the form of steadiness conditions (2.9) with re- 
spect to An and A$i on OV,. Recalling that here Qi and consequently also Aqi are continu- 
ous< and equating the coefficients at A$1 = A&-= A%,+ to zero, we find that 

IrrTJ %a - I%al %I = 0, M~,a - [n;*l 911 = 0 

The determinant of coefficients at [qTi] which by virtue of (1.3) is equal p& and non- 
zero. Hence the above equalities imply the continuity of components of 9 tangent to the shock 

L%,l = 0, [C&J == 0 (2.12) 
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Then equating to zero the coefficients at An on c?v, and eliminating J in the obtained form- 

ula, using (2.10), we obtain the condition of conservation of the momentum component normal 
to the shock 

rprm" + PI = 0 12.13) 

The condition of conservation of total enthalpy at the shock follows directly from Eq, 
[2.10), if one writes it twice (ahead and behind the shock) and takes into account the con- 
tinuity of li and J on the shock. 

U can become discontinuous only in the presence of external surface forces (when J and 
not I is conserved on al’,). The continuity of J on dV, was assumed right from the beginning. 

The condition of invariance of L on av, with respect to An also yields (2.13), after 
the elimination of J with the use of (2.10). But at a tangential discontinuity q,, = 0, hence 
also here 

Ipf = 0 (2.14) 

According to (1.3) when &, is zero, the determinant D($'~J) of coefficients at 4ri in 

multipliers at &*i or Sqi in the integrals with respect to 8V, and aF, in (2.9). This en- 
ables us to write (2.9) in the form 

At every point of 8Vb and of both sides of aV, which are stream surfaces, it is con- 
venient to direct vector z1 along the velocity vector. Then h==% qTa= 0 and the expression 
for 61~ becomes 

12.151 

Let, moreover, the varied and original surfaces BV, and avb be formed by streamlines 
that correspond to the same pll and 9%. Without going into a detailed discussion of this 
situation, we would point out that it is often automatically realized. For instance, it is 
so at tangential discontinuities that begin in the oncoming stream, on bodies in unperturbed 
streams with attached bow shocks and at tangential discontinities that are formed behindthese, 
on "external" impenetrable surfaces in problems of flow in channels, etc. When the assumed 
condition is satisfied, A$ on c?V, and @i on W,, are nonzexo only becuase of the shift 
of streamlines on respective surfaces. By defining such shift by the quantity AT,, i.e. 
displacement of streamlines in the direction of vector 7% normal to it by virtue of the sele- 
ction of r,, it is possible to show that A$i = _t~~,Az, on 8V, and &i S -Ti?Ar, on a?',. 
The use of these equalities reduces to zero the first two integrals in the right-hand side of 
(2.15)‘ 

Omitting a detailed investigation of the last integral in 6L, we point out the follow- 
ing. In any specific problem We is either absent or decomposed in surfaces bounding the 
considered flow on different sides. Thus it is sometimes justified to introduce a finite re- 
gion on whose boundaries appropriate boundary conditions are established, instead of consider- 
ing the infinite stream flow over bodies. Then, as a rule, the orientation of vector q is 
known in the oncoming stream (on dV,‘) and reasonably far behind the body (on He+). The 
latter makes it possible to reduce the terms with &I& to zero by selecting aV,+ normal to 9. 
Then ~7%~ = 0 and the last integral in the right-hand side of (2.15) vanishes for any 6qi, 
Along sections aV, that coincide with fixed stream surfaces, the same integrals vanish be- 
cause here 6& = 0. 

Formulation of the variational principle for the three-dimensional case was based in /4/ 
on the analysis of functional 

in which the integrand is, by virtue of the assumption of isoenergy, a function of %@i and 
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V'&. Although only continuous flows wereinvestigated in /4/, the analysis similar to the 
described above shows that in the case of (2.16) the Weirstrass- Erdman conditions yield the 
same conditions at strong discontinuities as (2.1). Incidentally, we would point out that 
when CJ=O in the case of solutions corresponding to a real flow, i.e. which satisfy the 
energy integral (2.101, formula (2.1) reduces to (2.16). However the use of the variational 
principle in the form fZ.1) is preferable not only owing to its greater generality but, also, 
because the analysis that assumes the independence of p proves to be simpler. 

3. Let us now restrict the analysis to the narrower class of piecewise isoenergetic and 
piecewise isentropic steady streams with tangential discontinuities of any intensityandshock 
waves that are weak in the sense of entropy increase, and can be considered with ahighdegree 
of accuracy ([sl -[pls) 8s isentropic approximation. It is then possible to introduce the 
continuous potential 9 such that q = Vd in each subregion ‘vk into which, unlike previou- 
sly, the sire-m is split only by tangential discontinuities I including thoseoccurringin flows 
over bodies, but not by shock waves. Introduction in Y" of the continuous potential as op- 
posed to the stream functions a, automatically ensures the continuity of velocity vector 
components pTi = 8cpkJazi tangent to shocks, The energy integral is, with allowance for me 
written in the form 

(Vcp")2 i 2 -I i (p, 9) -i- U = Jk 13.1) 

where, unlike in Sect.2, Sk and Jk are constant in Irk. Moreover (3.1) ensures the con- 
tinuity of total enthalpy at compression shocks. Additionally, it follows from this that p 
is a known function of VT', U, S'", and Jk. However, since u is a fixed function of coordinat- 

es, and S" and Jk are fixed constants, we shall write p i=: pk (Vr$). In conformity with the 
equality Tds = di - (11 p)dp and (3.1) we have 

Q = -_(PVTkJ 6 (V& (3.2) 

We introduce the functional 

(3.3) 

which differs the functional of one of the formulations of Bateman's principle only by the 
presence of superscripts. If (3.3) yields the variational principle, then by virtue of the 
above condition of invariance of L to variations cp" and displacements of discontinuity sur- 
faces must yield besides the continuity equation, the continuity of the mass stream and of 
the normal component of momentum on weak shocks (the continuity of I on these inthecorollary 
of (3.111, the condition of impenetrability on tangential d&continuities and body surfaces, 
and condition (2.141 on tangential discontinuities. We shall show that it is in fact so and 
that, consequently, (3.3) leads to the required principle. It is obvious that the validity 
of the used here formulation of Bateman's principle for isoenergetic and isentropic flowswith 
tangential discontinuities and weak shock with,is simultaneously proved. 

The calculation of &L is carried out as in Sect.2. Taking into account certain differ- 
ences related to the use of (3.21, we finally obtain 

(here and subsequently the superscript k is omitted). 
From this, equating to zero the coefficient at 6g, in the volume integral, we obtain the 

continuity equation 

v (PVrp) = 0 (3.5) 

where the density is a known function of VT for each subregion vh. The form of the latter 

is defined by the integral (3.1) and the equation of state of the form P = P(i,s). 
The condition of impenetrability of bodies surfaces (Vcp), = 0 is obtained by equating to 

zero the coefficient at 6~. The same condition is obtained for both sides of each tangent- 
ial discontinuity as the result of equating to zero of the coefficients at Am, and Am_+ AC+ 
Oil sv, * The condition of continuity of p on SV, is then obtained by investigating the co- 

efficient at An. 
For shock waves where the potential cp is continuous and, consequently Am+= AT_, we sim- 

ilarly obtain from (3.4) 
IP (Vcp),l = 0, [P (Vcp)," + PI = 0 
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which are the conditions necessary for completing the proof of the statement made above. The 
remaining in (3.4) integral over @v, shows that in the approximation considered in the pre- 
sence of such boundaries it is convenient to specify the constancy Of cp on them or, as in 

Sect.2, take the stream surface as av,. 

4. Let us consider unsteady flows with contact discontinuities of any intensityandweak 
shock waves that are the analog of steady flows in Sect.3. For these the part of (3.1) is 
played in each subregion 'v" by the integral 

'it' + (Vm')" / 2 -t i (P, Sk) + u = Jk (t) (cpt = dq / at) (4.1) 

which implies that p =pk(~lX,Vvk)in the same sense as in Sect.3, and 

SP = - Pbk - wPk) 6 WP’) = {pt -l- v (pbk)) 6qk - (P@% - V UPVcpL) 6qk} 
(4.2) 

is substituted for (3.2). 
Having in mind the extension of Bateman's principle to the considered case we introduce 

the functional 

L s ~SS Pk tw k, Vcpk) as2 
-VXT 

(4.3) 

in which Z is the time interval. We shall show that the condition of invariance of L to vari- 
ationof rp and displacements of discontinuities provide all necessary equations and conditions. 
For this, using (4.2) and proceeding as in Sects.2 and 3 (taking, of course, into account 
singularities of the space of four variables), we variate (4.3). we obtain 

where (and subsequently the superscript k is omitted),X& = 8Vd X z, Dis the velocity of the 
respective surface along the normalto itself, the first term in the integral over aQd is the 
result of integration with respect to t, and the second, the result of passing from the in- 
tegral over V to that over $Y. When determining SL, the variations 6~ at the time 
interval ends were disregarded. The obtained expressions for 6L with allowance for (2.4) 
assume the form 

(the integral over LQ is subsequently omitted). 
From this, as in Sect.3, we obtain the equations of continuity, the conditions of impene- 

trability D - (VT),= 0 at the body surfaces and contact discontinuities, the stipulation of 
pressure continuity on the latter, and the equalities 

IP (D - (V&)1 =07 IP fVcp)* ((Vm)pt, - D) + PI = 0 

on shock waves. Conservation of components q = Vm tangent to shocks is implied, as in Sect. 
3 by the continuity of potential on them, and the condition of total enthalpy conservation (in 
the shock system) 

[(L, - (V&J" + Zil = 0 

is obtained as the corollary of (4.1) of continuity of pJ,U and of that at the shock 

Icptl + D I(V&l = 0 

Note, that, as shown by the preceding, the success of investigation of flows with strong 
discontinuities is linked with the selection of the function which remains continuousonshock 
waves. Moreover,in the presence of regions of continuous entropy change these functions must 
remain valid for a particle and ensure that the continuity equation is satisfied. Continuity 
of these functions at tangential discontinuities is not required. It seems that also in the 
general three-dimensional unsteady case it is expedient to use three "stream functions" 
(Lagrangian variables) when formulating variational principles. The introduction in the four- 
dimensional space (t,x) of the "velocity vector" q” with components l,p,,p,,ps, where pi are 
projections of q on the Xi-axes and of operator V" with components Of& and af%, then the 
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"stream functions" $i, which ensure the fulfillment of continuity equations and remain valid 
in the particle, can be defined by the equality pq' = V"Q1 X V"$, X V%&. 

Finally, we shall point out one singularity of the variational principles expounded in 

/3,4,14/ and in Sect.2 which must be kept in mind when applying them to flows with shockwaves. 

In a real flow the displacement of shock surfaces and the flow perturbation upstream of the 

latter affects functions Sk(%,%), while in the derivation of conditions of steadiness they 

are assumed above to be fixed functions *I and I)*. This fact which was also noted in /14/ 
reduces the value of these principles and must be always taken into consideration in their 

application (for instance, in the construction of direct methods of solving problems of flow 

over bodies). This problem does not occur for any of the considered above variational prin- 

ciples in the case of weak shocks for which the isoentropic approximation is valid. We should 

point out in connection with this that the variational principles whose steadiness conditions 

yield among other things, relations at shock wave without, however, distinguishing between 

compression and rarefaction shocks. This makes it necessary to improve the respective prin- 

ciples by the inclusion the inhibition of entropy decrease. This relates also to principles 

that are formulated in Lagrangian coordinates. 

The author thanks Iu. D. Shmyglevskii for stimulating discussions, and L.V. Komarovskii 

and V.L. Berdichevskii for indicating valuable references. 
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